Gartner:人工智能“花”落何处
你是否曾将应用了人工智能技术的“杀手级应用”投入大规模生产中?
实际上,这种情况较为少见。去年,全世界3182名首席信息官(CIO)中,仅有4%表示他们已将人工智能相关的应用投入生产中,或是在未来12个月内有此计划。首席信息官不一定了解企业中正在进行的每一个项目,但基本上这个数字的误差不会超过它的两倍。也许,8%的企业都已将这样的应用投入生产中,但8%这个数字很可能是对实际情况的一种高估。
为什么会出现这种情况?
今年6月27日,Gartner发布了一项人工智能技术成熟程度的研究,为企业架构师和科技创新者提供相关见解。该研究的重点在于人工智能技术的成熟程度,而不在于人工智能领域企业的发展状况。
从表面上看,人工智能领域在过去十年中取得了突破性的进展。不断有新的、宝贵的机会涌现出来。在这十年中,在与人工智能有关的研究、会议、研究生项目、初创公司、风险资金、公司中的并购(M&A)活动、人工智能相关的工作发布、专利申请上,我们都取得了很大的进步。
但我们看到的只是其中的一部分,还须考虑的是:
如今,伟大的研究发现过多地涌现,使得技术空间变得混乱。在很多情况下,当下的技术突破在下一季度或第二年就会过时;
系统工程的指导方针(以及专业知识)较为缺乏;
如今的人工智能技术就像信息通信技术在1960年的发展状况一样,这种情况短时间内很难改变;
最糟糕的是,由于缺乏新的、使用人工智能技术的“杀手级应用”推动商务人士在这方面开展投资项目,人工智能相关的应用投入大规模生产的进程近乎处于停滞状态。
让我们把目光聚焦在“杀手级应用”的“真空”状态上。
我们向IT领导者或企业管理者询问了人工智能应用的问题,并向他们征求文字或口头回答,回答通常会分为以下四类:
第一,决策支持/扩大化——帮助人们变得更加聪明
第二,虚拟代理——熟悉用户的文字或发言
第三,决策自动化——任务自动化或优化
第四,智能产品——嵌入式的人工智能
这几类(先不说第二项)和老式汽车的市场非常相似——老式汽车的想法在十九世纪已经出现,在二十世纪早期出现了对应的产品。人们在熟悉的环境下可以更好地发挥想象。
因此,我们有例如:
二十世纪九十年代初的类似商业智能化的产物(决策支持/扩大化)
以“决策自动化”为特征的任务自动化和任务优化,实际上,我们从计算机时代的开始就在这么做了
智能产品——一个已经近乎没有实际意义的、过时的标签
客户对虚拟代理存在着普遍的兴趣。事实上,表示在人工智能技术上进行了投资的客户中,有三分之二提到了“面向用户”(通常与聊天有关)的项目。但是除非缩窄这些项目的定义,这些项目要达成一定规模的难度非常大。除了几家大型科技公司外,没有哪家公司具备开发出一个可以回答所有人所有问题的全能聊天机器人的能力,洞察引擎(Insights Engine)在这方面比聊天机器人做得更好。而从目前的情况来看,这些大公司的产品也并不是那么完美。谷歌的Duplex、亚马逊的Alexa Challenge中的对话可能是目前最为智能的,但企业是否会对这些项目大规模投资仍然悬而未决。
未来是难以预见的。除了聊天机器人之外,其余项目都仅是在“老式汽车”上的改进。那些能够让企业开创使用人工智能技术的新商业计划的巨大突破在哪里呢?
然而,行业、厂商、分析人员、咨询顾问乃至全世界范围内的企业,都并不了解这些巨大突破会是什么。
这其中一部分的问题是,人工智能最适合解决的问题,可能已超出那些想找到新的“杀手级商业应用”的人的能力和经验认知。
回到商用计算机的早期年代(二十世纪中期),企业购买计算机,运行人们已在纸上处理了数个世纪的问题。当人们知道如何在纸上进行记账,那么将相同的逻辑应用到计算机上就相对容易了。
在如今这个人工智能技术应用开始生产的早期时代,我们无意中失去了知道我们应该如何处理一些事情的能力。研究笔记中写道:
“我们现在能够用深度神经网络(DNN)为基础的系统对照片做面部识别。人类(我们灵长类动物的祖先)已经有至少五千万年的面部识别经验,但总的来说,我们并没有一套有效、系统的方法来进行面部识别。
我们只是运用人类的本能(不像科技开发者那样),用我们神经系统中不同的、与生俱来的学习回路来进行面部识别。其中具体的过程是模糊的。一个十五个月大的孩子是如何分辨出他父亲和母亲的图片的?我们并不了解。日常的人类经验不足以让我们建立一套实现脸部识别的技术。”
我们在缺乏这样的见解的同时,也缺乏实际经验以驱动对相关应用的创造或开发。拟人法可能会让我们误入歧途。
这些局限之外,我们仍要相信:
科学将以惊人的速度继续进步;
人工智能技术将会被应用在更多产品中;
到2020年,人工智能技术将存在于基本上所有的新型软件产品中;
厂商将会用这些嵌入式的技术增加并扩大其产品功能,此后企业就会因商业型人工智能的优势进行投资,而非开发相关技术。
等待能够带动重大商业投资的“杀手级应用”被发现的过程中,我们将继续以实际的、策略性的方式进行小型投资,为业务带来实际价值。