用机器学习改善供应链的10个方法
机器学习算法以及基于这种算法的模型,非常擅长在大型数据集中发现异常、模式和得出预测性见解,如此一来,当供应链遇到时间、成本和资源约束等多方面的挑战,机器学习成为解决这些问题的理想选择。
比如,亚马逊的Kiva机器人正是依靠机器学习技术来提高精度、速度和规模;而DHL则是利用人工智能和机器学习来支持他们的Predictive Network Management系统——该系统会分析58个不同的内部数据参数,以确定影响货运延迟的主要因素。
由此可见,机器学习正在重新定义下一代供应链管理。据Gartner预测,到2020年,95%的供应链计划(SCP)厂商将在他们的解决方案中采用受监督的和无人监督的机器学习技术;到2023年,25%的供应链技术解决方案中将内嵌智能算法和人工智能技术,或者将其作为增强型组件。
下面就让我们来看看机器学习改变供应链管理的这十种方式:
1、基于机器学习的算法是下一代物流技术的基础,先进的资源调度系统可以带来最显著的效果。据麦肯锡预测,机器学习最重要的贡献将是为供应链运营方提供更深入的见解,了解如何改善供应链,预测物流成本和物流效率,机器学习还提供了关于自动化技术如何带来最大规模优势的洞察。
资料来源:麦肯锡,《Automation in logistics: Big opportunity, bigger uncertainty》,2019年4月,作者:Ashutosh Dekhne、Greg Hastings、John Murnane和Florian Neuhaus
2、物联网传感器、远程信息处理、智能交通系统产生的数据集千变万化,运用机器学习算法和技术来改善供应链,要从最具多样性和可变性的数据集开始着手。而供应链最具挑战性的问题通常出现在优化物流方面,因此完成生产所需的材料必须要准时运送到达。
资料来源:毕马威,《Supply Chain Big Data Series Part 1》
3、机器学习具有通过使用物联网传感器发现追踪数据模式的潜力,每年可节省资金600万美元。BCG最近研究了使用追踪应用的去中心化供应链是如何提高性能和降低成本的,结果发现,当使用区块链在供应商网络中实时共享数据的时候,一个30节点的配置结合更好的分析洞察力,每年可节省成本600万美元。
资料来源:波士顿咨询集团(BCG),《Pairing Blockchain with IoT to Cut Supply Chain Costs》,2018年12月18日,作者:Zia Yusuf、Akash Bhatia、Usama Gill、Maciej Kranz、Michelle Fleury和Anoop Nannra
1 2 3 下一页>