人工智能引领现代农业的未来
思谱云汇智能客服机器学习可以揭示最佳的生长条件,以便尽可能的展现口感和其他特征。
使植物味道好的原因是什么?对于麻省理工学院媒体实验室的科学家来说,这需要植物学、人工智能算法和一些老式的化学知识的结合。
利用以上这些知识,媒体实验室开放农业项目的研究人员报告说,他们已经在不涉及基因编译的情况下种植出了你从未吃过的美味罗勒(一种西餐调味植物)。研究人员使用计算机算法来确定最佳的生长条件,以最大限度地提高被称为挥发性化合物的风味分子的浓度。
但这仅仅是“网络农业”新领域的开始,麻省理工学院媒体实验室的首席研究科学家、开放农业集团的董事卡莱布·哈珀说。他的小组目前正在致力于提高草药治疗人类疾病的特性,他们还希望通过研究作物在不同条件下的生长方式,帮助种植者适应变化的气候。
哈珀说:“我们的目标是在数据采集、传感和机器学习的交叉领域设计开源技术,并以一种前所未有的方式将其应用到农业研究中。”“我们真的对构建网络化工具很感兴趣,这些工具可以利用植物的生长过程信息、表型生物特征、所遇到的外界环境刺激及其遗传学特性,并数字化,使我们能够理解植物与环境的相互作用。”
研究人员在4月3日出版的《公共科学图书馆》期刊中,描述了对罗勒植物的研究新发现,让他们吃惊的是,每天24小时将植物暴露在光照下能产生最好的味道。开放农业集团的研究负责人、该研究的作者约翰?德拉帕拉说,传统的农业技术永远不会产生这种见解。
“你不可能以任何其他方式发现这一点。除非你在南极洲,否则没有一个24小时的光周期可以在现实世界中进行测试,”他说。“你必须有人为的环境才能发现这一点。”
本文的高级作者是哈珀和奥斯汀德克,以及萨斯大学计算机科学教授里斯托·米库莱恩。媒体实验室的主任研究员阿里尔·约翰逊和认知技术解决方案的艾略特·梅尔森是主要作者,开放农业项目的特别项目助理蒂莫西·萨瓦斯也是作者之一。
最大化风味
在麻省理工学院贝茨实验室的一个仓库中,开放农业集团的工厂是在经过改装的船运集装箱中种植的,因此可以小心地控制环境条件,包括光照、温度和湿度。
哈珀说,这种农业有很多名字——环境控制农业、垂直农业、城市农业——仍然是一个利基市场,但发展迅速。在日本,这样的“植物工厂”每周生产数十万棵生菜。然而,也有许多失败的案例,而且在致力于开发这类设施的公司之间很少有信息共享。
麻省理工学院倡议的一个目标是通过让所有的开放农业集团硬件、软件和数据自由共用,来克服这种信息隔绝。
哈珀说:“目前农业领域存在一个大问题,即缺乏公开数据、缺乏数据收集标准以及缺乏数据共享。”“因此,尽管机器学习、人工智能和先进的算法技术进展如此之快,但收集质量良好、有意义的农业数据却远远落后。我们的工具是开放源代码的,希望它们能够更快地传播,并创造共享科研的能力。”
1 2 下一页>