趋势:人工智能领域十大最具成长性技术展望
日前,在2018世界机器人大会基础技术与创新论坛中,中国电子学会发布了《新一代人工智能十大成长性技术展望》,经调研走访了一批在新一代人工智能技术及产业方面具备领先水平和特色的龙头企业,拜访了来自于知名高校、研究机构的人工智能相关领域专家学者,系统梳理了权威智库和知名战略咨询公司的最新报告,遴选了十项最具特色的成长性技术,结论如下:
对抗性神经网络。是指由一个不断产生数据的神经网络模块与一个持续判别所产生数据是否真实的神经网络模块组成 的神经网络架构,创造出近似真实的原创图像、声音和文本数 据的技术。该技术有望大幅提升机器翻译、人脸识别、信息检 索的精度和准确性,随着三维模型数据序列能力的提升,未来 将在自动驾驶、安防监控等领域产生可观的应用价值。
对抗性神经网络中产生数据与判别数据持续进行
胶囊网络。是指在深度神经网络中构建多层神经元模块,用以发现并存储物体详细空间位置和姿态等信息的技 术。该技术能使机器在样本数据较少情形下,快速识别不同 情境下的同一对象,在人脸识别、图像识别、字符识别等领 域具有广阔的应用前景。
胶囊网络算法可以从不同角度识别同一物体
云端人工智能。是指将云计算的运作模式与人工智能深度融合,在云端集中使用和共享机器学习工具的技术。该技术将庞大的人工智能运行成本转移到云平台,能够有效降低终端设备使用人工智能技术的门槛,有利于扩大用户群体,未来将广泛应用于医疗、制造、能源、教育等多个行业和领域。
推出人工智能服务的主要云计算公司
深度强化学习。是指将深度神经网络和具有决策能力的强化学习相结合,通过端到端学习的方式实现感知、决策或感知决策一体化的技术。该技术具有无需先验知识、网络结构复杂性降低、硬件资源需求少等特点,能够显著提升机器智能适应复杂环境的效率和健壮性,将在智能制造、智能医疗、智能教育、智能驾驶等领域具有广阔发展前景。
深度强化学习具有良好的结构特点
智能脑机交互。是指通过在人脑神经与具有高生物相容性的外部设备间建立直接连接通路,实现神经系统和外部设备间信息交互与功能整合的技术。该技术采用人工智能控制的脑机接口对人类大脑的工作状态进行准确分析,达到促进脑机智能融合的效果,使人类沟通交流的方式更为多元和高效,未来将广泛应用于临床康复、自动驾驶、航空航天等多个领域。
1 2 下一页>