使用 OpenCV-SeventhSense SOTA 模型进行人脸识别

磐创AI

    OpenCV 最近发布了与 SeventhSense 合作的人脸识别 SDK。它是 NIST 人脸识别挑战赛(2022 年 3 月)的前 10 名模型,速度极快且无需 GPU。
    在 opencv-seventhsense FR webapp 中,你可以创建一个集合并将组织中的人员聚合到组中。添加到集合中的每个人都具有姓名、出生日期、国籍、性别等属性,可用于识别此人。
    下面是 webapp 的链接和 UI 的快照。
    
    OpenCV — SeventhSense-人脸识别网络应用程序
    Python 和 C++ SDK 可用于将图像对象发布到 API 并检索给定图像的检测响应。
    下面的代码片段使你能够将角色添加到集合中,并检索给定测试图像的检测响应。
    我使用自己的旧照片来查看模型是否能够准确检测到我的脸。
    导入图片到 FR Webapp
    # Import the packages
    from opencv.fr import FR
    from opencv.fr.persons.schemas import PersonBase,PersonGender
    from pathlib import Path
    import cv2
    import json
    # Define the region, and developer key
    BACKEND_URL = "https://us.opencv.fr"
    DEVELOPER_KEY = "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
    # Initialize the SDK
    sdk = FR(BACKEND_URL, DEVELOPER_KEY)
    directory = "/imagepath"
    files = Path(directory).glob('*')
    # Here we get an existing collection, but this could also
    # be a collection you created
    all_collections = sdk.collections.list()
    all_collections = str(all_collections)
    all_collections = all_collections.replace("'", """)
    all_collections = json.loads(all_collections)
    col_id = all_collections['collections'][0]['id']
    print(f"The collection id is - {col_id}")
    my_collection = sdk.collections.get(col_id)
    for file in files:
       if Path(str(file)).suffix == ".jpg" :
           # Create PersonBase
           image = cv2.imread(str(file))
           person = PersonBase([image], name="Rajathithan Rajasekar",
               gender=PersonGender("M"), nationality="Indian",)
           # Add collection to the person's collections
           person.collections.append(my_collection)
           # Create the person
           person = sdk.persons.create(person)
           print(f'Uploaded the image file - {file}')
    从 FR webapp 人物集合中检测给定图像
    from opencv.fr.search.schemas import DetectionRequest, SearchOptions
    from opencv.fr.api_error import APIError, APIDataValidationError
    from pathlib import Path
    from opencv.fr import FR
    import json
    from json import JSONDecodeError
    import cv2
    import numpy as np
    import imutils
    import time
    BACKEND_URL = "https://us.opencv.fr"
    DEVELOPER_KEY = "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
    # Initialize the SDK
    sdk = FR(BACKEND_URL, DEVELOPER_KEY)
    image_base_path = Path("sample_images")
    image_path = "imagepath/test/test.jpg"
    sourceimage = "imagepath/rajathithan-rajasekar.jpg"
    # resize source image
    simg = cv2.imread(sourceimage)
    simg = imutils.resize(simg, width=640)
    simg = imutils.resize(simg, height=480)
    #Read old test image
    frame = cv2.imread(image_path)
    print(frame.shape)
    #Get collection id
    all_collections = sdk.collections.list()
    all_collections = str(all_collections)
    all_collections = all_collections.replace("'", """)
    all_collections = json.loads(all_collections)
    col_id = all_collections['collections'][0]['id']
    print(f"The collection id is - {col_id}")
    #Initilize the search options
    options = SearchOptions(
       collection_id=col_id,
       min_score = 0.8,
    )
    #Detection request with search options
    detect_request_with_search = DetectionRequest(image_path,options)
    detectionObject = sdk.search.detect(detect_request_with_search)
    print(detectionObject)
    bbox = detectionObject[0].box
    print(bbox)
    personInfo = detectionObject[0].persons[0]
    print(f"Name:{personInfo.person.name}")
    print(f"Gender:{personInfo.person.gender}")
    print(f"Nationality:{personInfo.person.nationality}")
    print(f"Score:{personInfo.score}")
    def rec_frame_display(frame: np.ndarray, roi, personInfo) -> np.ndarray:
       diff1 = round((roi['bottom'] - roi['top'])/4)
       diff2 = round((roi['left'] - roi['right'])/4)
        
       cv2.line(frame, (roi['left'],roi['top']), (roi['left'],roi['top']+diff1), (0, 200, 0), 4)
       cv2.line(frame, (roi['left'],roi['bottom']), (roi['left'],roi['bottom']-diff1), (0, 200, 0), 4)
        
       cv2.line(frame, (roi['right'],roi['top']), (roi['right'],roi['top']+diff1), (0, 200, 0), 4)
       cv2.line(frame, (roi['right'],roi['bottom']), (roi['right'],roi['bottom']-diff1), (0, 200, 0), 4)
        
        
       cv2.line(frame, (roi['left'],roi['top']), (roi['left']-diff2,roi['top']), (0, 200, 0), 4)
       cv2.line(frame, (roi['left'],roi['bottom']), (roi['left']-diff2,roi['bottom']), (0, 200, 0), 4)
        
       cv2.line(frame, (roi['right'],roi['top']), (roi['right']+diff2,roi['top']), (0, 200, 0), 4)
       cv2.line(frame, (roi['right'],roi['bottom']), (roi['right']+diff2,roi['bottom']), (0, 200, 0), 4)
       cv2.putText(frame, "Name : " + personInfo.person.name, (50, 50),
           cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255),2,cv2.LINE_AA, False)
        
       cv2.putText(frame, "Gender : " + str(personInfo.person.gender), (50, 150),
           cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255),2,cv2.LINE_AA, False)
        
       cv2.putText(frame, "Nationality : " + str(personInfo.person.nationality), (50, 250),
           cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255),2,cv2.LINE_AA, False)
        
       cv2.putText(frame, "Confidence Score : " + str(round(personInfo.score * 100,2)) + " %", (50, 350),
           cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255),2,cv2.LINE_AA, False)
        
       return frame
    roi = json.loads(str(bbox).replace("'","""))
    frame = rec_frame_display(frame, roi, personInfo)
    frame = imutils.resize(frame, width = 640,height = 480)
    combine = np.concatenate((simg, frame), axis=1)
    cv2.imwrite("final.jpg",combine)
    cv2.imshow("Face recognition on an old pic",combine)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    左侧照片是我当前的图像,右侧照片是我带有检测结果的旧图像。