百度大脑的野心,是通过平等赋能让“AI技术本身不再是问题”
李北辰不知你是否察觉,如今人工智能的发展阶段,与百年前电力系统的诞生初期颇为相像:当人类发明了电力,这一革命性基础设施就会迅速完成对创新者的赋能,让人们的创造力与电力完成嫁接,引领各个领域完成从“电”到“电器”的蜕变——如今,作为新时代的基础设施,人工智能也正走在从技术攻坚到嵌入大众生活的历史进程,无论是凭借个人还是组织的力量,当技术本身不再是问题,你就会清晰看到开发者将想法变成现实的景象,清晰听到AI在不同领域落地的声响。
而完成这一历史进程的硬性约束条件,就是“技术本身不再是问题”,这意味着,在底层框架层面,开发者需要“被赋能”,这一角色毫无疑问将由巨头担当。
就在不久前,Facebook,谷歌,微软等国际科技巨头都召开了自己的年度大会,在硅谷知名科技行业分析师本·汤普森看来,除了传递最新的业务发展逻辑,这些大会还透射出巨头们的技术哲学观,汤普森就在文章中敏锐地指出:与谷歌和Facebook希望让“技术帮人类做事”不同,微软的哲学观是让技术“为人类赋能”——“不是让技术为人们做事,而是让人们做以前从未做过的事”,就像微软CEO纳德拉所言:“我们有责任确保这些技术赋予每个人权力,用这些技术确保每个行业都能增长和创造就业机会。”
而在中国,百度也在最近召开了AI开发者大会,在大会上,作为百度人工智能赋能的核心,百度大脑宣布升级至3.0版,并宣布对外开放110多项AI能力,未来也将持续平等赋能开发者——从这种自我期许来看,百度的技术哲学观似乎更偏向更具使命感的后者,他们希望平等赋予每个人和每个组织权力,以取得更多成就。
可以预见,在科技巨头的赋能下,AI将在不同领域迅速落地,诞生这个时代最重要的“电器”。
落地为先
先来回顾一下百度大脑3.0的迭代,其中包括技术层面和开放层面。
在技术层面,百度大脑3.0提出了“多模态深度语义理解”的核心能力,它指对文字、声音、图片、视频等多模态的数据和信息进行深层次多维度的语义理解,包括数据语义、知识语义、视觉语义、语音语义一体化和自然语言语义等多方面的语义理解技术,不仅能让机器听清、看清,更能深入理解它背后的含义,深度地理解真实世界,进而更好地支撑各种应用。
另外值得一提的是,当百度大脑迭代到3.0版本,也形成了从芯片到深度学习框架、平台、生态的AI全栈技术布局,是目前最完整的AI技术平台:尤以芯片领域最令人振奋,百度大脑3.0首次将芯片纳入技术体系,发布了百度自主研发的中国第一款云端全功能AI芯片“昆仑”,其中包含训练芯片“昆仑818-300”,推理芯片“昆仑818-100”,能够大幅加速百度大脑的算力增长;而在百度深耕已久的开源框架领域,深度学习平台PaddlePaddle也发布了完整的PaddlePaddle Fluid训练与预测框架,PaddlePaddle作为AI芯片指令集,将与AI芯片结合,推动AI行业生态快速发展,降低深度学习应用门槛,优化整个深度学习的研究环境。
更重要的是,如前所述,百度AI开发者大会上,百度大脑3.0宣布开放110多项场景化AI能力与解决方案,并通过开放EasyDL等定制化平台以及软硬一体的AI能力,持续降低AI应用门槛,从而帮助开发者和企业应用AI实现业务升级,百度大脑未来也将不断开发新的AI能力,让任何人(包括个人开发者和不同规模的企业)基于真实需求的AI想法,都能通过百度的赋能,在不同领域从容落地。
对于任何AI开发者而言,这无疑是一种巨大利好。你知道,在资本和媒体的合力塑造下,人工智能多少成为一个“概念的囚徒”——于是不难发现,在产业界,有太多为演示而生的产品,太多为概念而生的公司,太多不知如何让技术落地,不懂需求,把AI当“锤子”到处找“钉子”的创业者;与之类似,在学术界,尽管中国AI论文发表数量经常被视作中国AI产业领先的理由之一,但坦率地讲,懂得技术原理的人很多,但真能让AI应用实现落地的很少。
嗯,真正的人工智能,绝不仅仅是学者的论文和网上刷分的选项,任何的学术研究和产品展示,最终都要实现落地,普惠大众——这就好比,在电力时代,大众并不关心爱迪生与特斯拉的直流交流电“原理之争”,他们只想要更好的电器。
我相信,在百度等科技巨头的充分赋能下,AI大规模落地的速度,可能要比人们想象中要快。
1 2 下一页>