AI同传现场掉链子,人工智能的理解能力还需努力


    今年的博鳌亚洲论坛上,第一次出现了AI同传。值得注意的是,这是博鳌论坛创办17年首次采用人工智能同传技术。然而,在如此重要的场合,现场配备的腾讯AI同传却掉了链子。词汇翻译不准确、重复、短语误用等“乌龙”引来各方“嘲笑”。
    人们总是把AI跟人类职位对立起来,各种“取代论”层出不穷。博鳌论坛会议前,就出现了许许多多的“取代论新闻”引起了各界关注。最终,AI同传“翻车”,引来外界一片唏嘘。
    然而,就目前来看,AI同传前路未明,太早将其与人类同传对立起来实在是“杞人忧天”。除了取代,AI同传其实有更好的路。
    图为AI同传内容
    AI同传进阶之路:变智能问题为数据问题
    很多人都觉得人工智能如果要处理自然语言,就必须理解自然语言。实质上,AI翻译靠的是数字,更准确地来说,是统计。AI同传出错,并不是“智能”不够,实质上,是数据和模型出了问题。
    AI同传还需要理解力
    首先,AI同传要去理解场景。在博鳌论坛上,会议现场专业度高、覆盖度广,AI对特殊场景的理解还不够。场景对于语义具有至关重要的影响,相同的一句话在不同的场景里有不同的意思。举个例子,“好”这个字在百度汉语显示有多种语义,既可以表示称赞,也可以表示状态,还可以表达问好……诸如此类,语义的表达和理解都要结合具体的场景。在具体的句子中,这种语义与情景的结合就更为紧密,更需要机器理解学习。
    其次,AI要理解口语的模糊逻辑。口语翻译是不会百分百传译的,根据AIIC(国际会议口译员协会)的规定,同传译员只要翻译出演讲者内容的80%就已经算是合格了(90%~100%的“同传”几乎是不可能的)。这意味着AI工作量减少吗?当然不,正是这种模糊的东西使得AI同传更加困难,除此之外,口语没有标点符号来标志句子,缺少了必要的声调和停顿,就很容易造成句子的歧义。而模糊的指令极有可能出现的是满屏的错码。
    
    
    1  2  3  下一页>