想理解人类大脑工作原理,或许可以从嗅觉系统开始


    机器学习技术通常以视觉系统为基础进行信息处理,现在为了超越这一局限,科学家们开始从嗅觉当中汲取灵感。
    如今的人工智能系统(包括受到神经元与神经系统连接而启发的人工神经网络),已经能够很好地完成具有已知约束条件的任务,此外,这些系统往往还需要配合大量计算能力与可观的训练数据集才能起效。凭借这些特质,它们在对弈、特别是围棋领域获得了出色表现,能够检测图像中是否存在车辆,并成功区分猫与狗等不同视觉对象。不过宾夕法尼亚大学计算神经科学家Konard Kording指出,“但它们在创作音乐或者撰写短篇小说方面却表现得相当糟糕。显然,如今的人工智能系统在以有意义的方式进行推理时面临着重大的挑战。”
    为了克服这些局限性,一部分研究小组正在回归从大脑中寻求新答案的方法。更令人称奇的是,其中一些研究人员选择了看似不太可能的起点:嗅觉。科学家们希望更好地理解有机体如何处理化学信息,并发现了似乎有望解决人工智能问题的相关编码策略。此外,嗅觉回路与其它更为复杂的大脑区域间存在惊人的相似性,而后者则可能指引我们构建起更强大的智能机器。
    计算机科学家们现在正着手在机器学习环境当中对上述发现进行消化。
    侥幸与革命
    时至今日,最为先进的机器学习技术至少在某种程度上仍然依赖于视觉系统模拟结构,即以信息为基础进行分层摄取。当视觉层接收到感官数据时,其首先会选择小的但定义明确的特征,包括边缘、纹理、颜色等与空间映射相关的元素。神经科学家David Hubel与Torsten Wiesel在上世纪五十年代到六十年代发现,视觉系统中的特定神经元与视网膜中的特定像素位置属于一一对应关系,这一重大发现亦使他们成功拿下诺贝尔奖。
    当视觉信息通过皮层神经元进行传递时,边缘、纹理与颜色等细节信息汇集在一起共同形成愈发抽象的输入表达:例如对象为人脸,且面部特征显示其身份为Jane。网络中的每一层都有助于有机体实现这一最终判断目标。
    深层神经网络会以类似的分层方式运作,并给机器学习与人工智能研究带来了一场深远的革命。为了都会这些网络识别人脸等物体,研究人员会向网络当中传入数以千计的样本图像。该系统会加强或削弱各人工神经元之间的连接,从而更准确地判断特定像素集合所形成的更为抽象的人脸图形。在充足样本的支持之下,其能够识别新图像当中包含的人脸对象,以及此前从未见过的场景中的人脸模式。
    研究人员在此类网络当中取得了巨大成功,除了图像分类方面,其亦可在语音识别、语言翻译以及其它机器学习应用领域带来良好表现。华盛顿大学计算神经科学中心的研究人员Charles Delahunt表示,“我喜欢将深层网络视为货运列车。其非常强大,但要求我们提供平坦的路面,从而铺设轨道并建立庞大的基础设施。但我们都很清楚,生物系统并不需要这些——它们能够解决很多深层网络如今尚无法解决的难题。”
    下面再来聊聊人工智能领域的热门话题:自动驾驶汽车。在汽车立足新环境进行导航时,周边环境将始终不断变化,且充满噪音与模糊性因素。如此一来,受到视觉系统启发的深度学习技术可能无法正常发挥作用。事实上,基于视觉的松散方法恐怕也不能很好地解决问题。在这方面,麻省理工学院的生物物理学家Adam Marblestone表示,视觉处理所代表的是一种在根本层面以偶然性为基础的洞察获取能力,这是一种“历史的侥幸”。正是这种侥幸让科学家们获得了目前人工智能领域最为成熟的系统,即基于图像的机器学习应用方向。
    加州索尔克生物研究所的计算机科学家Saket Navlakha则提醒称,“每种类型的刺激都会以不同的方式进行处理。举例来说,视觉与嗅觉就采用完全不同的信号类型。因此,大脑可能会使用多种不同的策略来处理不同类型的数据。我认为除了研究视觉系统如何运作之外,研究人员还有很多其它课题需要探索。”
    图:索尔克研究所计算机科学家Saket Navlakha开发出一种基于飞蝇的嗅觉回路算法,希望改善机器学习技术在相似搜索与新型检测任务中的表现。
    他和其他一些研究人员们发现,昆虫的嗅觉回路可能会带来一些值得参考的经验。直到上世纪九十年代,哥伦比亚大学的生物学家Linda Buck与Richard Axel才发现用于处理气味受体的基因,这标志着嗅觉研究工作正式起步。从那时开始,嗅觉系统开始变得极具特色,并指导着更多研究人员探索苍蝇与其它昆虫对气味的处理方式。一部分科学家认为,其能够轻松解决视觉系统所不能处理的多种常见计算挑战。
    Delahunt解释称,“我们之所以关注嗅觉,是因为这是一套有限的系统,因此能够以相对完整的方式实现表征。这是个值得为之奋斗的好机会。”
    英国赫特福德大学计算神经科学家Michael Schmuker补充称,“人们现在已经能够利用视觉完成一些奇妙的任务。也许我们也能够通过嗅觉实现同样神奇的效果。”
    随机与稀疏网络
    嗅觉与视觉在很多层面存在着本质性的区别。首先,气味是一种非结构化信息,其不存在边缘; 换言之,我们无法在空间当中对具体对象进行分组。气味属于具备不同组成及深度的混合物,我们难以将其归类为彼此相似或不同。因此,研究人员在探索中往往并不清楚应该对哪些特征加以关注。
    这些气味将由浅层三层网络进行分析,该网络在结构上比视觉皮层复杂得多。此外,嗅觉区域的神经元会随机对整个受体空间进行采样,而非关注层次结构中的特定区域。研究人员们利用索尔克研究所神经生物学家Charles Stevens提出的所谓“反映射(antimap)”机制。在像视觉皮层这样的映射系统当中,神经元的位置将提示其所携带的信息类型。但在嗅觉皮层的反映射体系下,情况则并非如此。相反,信息会在整个系统中分布,且对相关数据的读取需要立足一些极低数量的神经元进行采样。更具体地讲,研究人员需要通过高维空间内的稀疏信息表达来实现反映射。
    采取与果蝇相同的嗅觉回路,研究人员利用50个各自对不同分子具有敏感性的投射神经元接收受体输入。单一气味会激发多个不同神经元,而每个神经元都代表着不同的气味。这是一组信息的重叠表示,并在本示例中以50维空间表现。在此之后,该信息会被随机投射至200个所谓凯尼恩(Kenyon)细胞中,该细胞通过编码识别对应的特定气味。(对哺乳动物而言,其体内的梨状皮质细胞即负责处理此项任务。)其将形成40倍规模扩展,从而确保神经反应模式以更敏锐的方式实现气味区分。
    Navlakha表示,“我们假设有1000个人齐聚于某一房间当中,并尝试根据业余爱好对其进行分类组织。当然,在这个拥挤的空间内,大家或许能够找到一些方法将其划分成不同的团队。但在实际场景中,人们相当于分散在广阔的足球场上,研究人员需要学会处理这些额外的空间并构建起数据。”
    飞蝇的嗅觉回路构建完成之后,其需要找到一种切实可行的方法以利用非重叠神经元识别不同气味。这套模型通过数据“稀疏化”实现这一点。在2000个凯尼恩细胞当中,只有约100个(占总体数量的5%)对于特定气味具有高活性(其它活性较低的细胞处于静默状态),并为各气味提供唯一的标注。
    简而言之,虽然传统的深层网络(同样是从视觉系统中获取线索)在“学习”时会不断改变其连接强度,但嗅觉系统似乎通常不会以这种对投射神经元与凯尼恩细胞间连接进行调整的方式进行自我训练。
    随着研究人员在新世纪中对嗅觉系统的不断探索,他们开发出相应算法以确定更高维度的随机嵌入与稀疏性对计算效率造成的实际影响。英国苏塞克斯大学的Thomas Nowotny与加利福尼亚大学圣迭戈分校的Ramón Huerta两位科学家甚至建立起另一种与机器学习模型间的连接方式,并将其命名为支持向量机(support vector machine)。他们认为,自然与人工系统对信息的处理方式在形式上是等同的,二者都会利用随机组织与维度扩展的方式有效表达复杂数据。在这方面,人工智能与生物进化在同一类解决方案上实现了独立融合。
    图:苏塞克斯大学信息学教授Thomas Nowotny发现了嗅觉系统与一类所谓支持向量机的模型之间的相似之处。以此为基础,他进一步探索嗅觉的实现原理并希望借此指导更多潜在的人工智能应用方向。
    凭借着这种连接方式,Nowotny和他的同事持续探索嗅觉与机器学习技术之间的关系,希望寻求二者之间更深层次的联系。2009年,他们表示最初用于识别气味的昆虫嗅觉模型也可成功识别手写数字。此外,除去其中的大部分神经元——用以模拟脑细胞的死亡与无替换过程——并不会对其表现造成太大影响。Nowotny表示,“这套系统中的某些部分可能会中断,但系统整体仍能够继续工作。”在他看来,未来火星探测器等设备有望采用这种硬件类型,从而在恶劣的条件下长期保持运行。
    
    
    1  2  下一页>