AI系统能够准确分辨真假伦勃朗画作


    一种新的AI算法,可能有望解决以往一直难以攻克的图像识别与分析问题——特别是那些由于AI训练数据集太小,或者个别样本图像太大/分辨率过高而导致AI算法无法处理的场景。这种新算法已经能够检测出伦勃朗这位著名艺术家的画作,同时准确发现伪造品。更重要的是,这一算法的创作者亦在积极寻求其它潜在发展方向,希望能够找到利用小规模数据集实现AI神经网络功能训练的可行途径。
    利用业余时间,来自马萨诸塞州的一对夫妇编写出一套系统,据称其能够在高达90%的准确率从图片中识别出伦勃朗的画作。
    根据采访,这两位AI研究人员在算法构建当中借用到热力学与信息论中的一大重要概念——熵,旨在利用AI系统成功找出伪造的艺术品。
    在煮沸的水以及黑洞等物理系统当中,熵这一概念指的是特定体积之内所包含的紊乱度量。而在图像文件当中,熵则被定义为文件中所包含的有用/非冗余信息量。
    马萨诸塞州弗雷明汉市IEEE成员兼业余AI程序员(以及全职专利律师)Steven Frank表示,“熵用于衡量信号中信息的多样性水平。其基本思路在于,如果一条消息的全部内容都是,那么其中就完全不存在熵,因为内容并没有任何多样性可言。但如果消息的内容是一条完全随机的序列,则代表其中包含极高的熵值与高度多样性……这同时意味着,我们无法对其进行压缩或者使用比消息更小的任何bit对其进行描述。”
    因此,对单一图像的熵进行评级,就意味着确定图像当中包含怎样的数字多样性评分——即图像的单调性或算法(低熵评分)与随机性及不可预测性(高熵评分)之间的关系。可以肯定的是,这种作法与定性或者美学判断无关。此类指标在艺术评论家眼中可能一文不值,但却有可能在计算机平台上发挥重大作用。Frank辛集国,实际上图像中的熵值有可能在利用AI技术处理高分辨率图像这一长期难题层面带来突破性助力。
    这是因为以MB甚至GB为单位的超高分辨率图像往往体积过大,无法通过AI神经网络进行处理——特别是图像识别算法中常见的所谓卷积神经网络(简称CNN)。
    研究人员们利用少量伦勃朗的肖像画(包括他的自画像,如图所示)对AI神经网络进行训练,并由此得出了能够测试艺术品是否属于伪造的识别算法。
    
    
    1  2  下一页>