什么是可解释的人工智能?
可解释的人工智能意味着人类可以理解IT系统做出决定的路径。人们可以通过分解这个概念来探究人工智能如此重要的原因。
虽然人工智能应用越来越广泛,但关于人工智能也有一些误解。有些人采用“黑盒”这个术语描述人工智能,认为其内涵是神秘和不祥的部分,其“X档案”的内容比IT 日常业务还要多。
然而,像机器学习或深度学习这样的人工智能系统,确实需要人工输入,然后在没有可解释的场景的情况下产生输出(或做出决定)。人工智能系统做出决定或采取行动,人们不一定知道它为什么或如何达到这个结果。人工智能系统就是这么做的,而这就是人工智能的黑盒模型,它确实很神秘。在某些用例中应用很好,而在其他情况下却不一定。
PubNub公司首席技术官兼联合创始人Stephen Blum表示:“对于像人工智能驱动的聊天机器人或社交信息的情感分析这样的小事情,而人工智能系统是否在黑盒中运行并不重要。但是对于人类具有巨大影响的用例(例如自动驾驶车辆、飞行导航、无人机、军事应用)能够理解决策过程是至关重要的任务。随着人们在日常生活中越来越依赖人工智能,需要能够理解其思维过程,并随着时间的推移做出改变和改进。”
输入可解释的人工智能——有时以缩写词XAI或类似术语(如可解释的AI)来表示。顾名思义,它可以被人类解释和理解,虽然这是一种有点简化的方式,是一种可解释的人工智能。
以下是最近的HBR公司分析服务研究报告《现实世界人工智能的执行指南》中更明确的定义:“机器学习技术是一种使人类用户能够理解、适当信任和有效管理的人工智能。”
而包括美国国防部高级研究计划署(DARPA)在内的多个组织正在努力解决这个问题。
“信任”这个词很关键。为此,人工智能专家Blum和其他专家提出了可解释的人工智能定义,并解释这一概念对于从金融服务到医学等领域的人工智能工作的组织至关重要的原因。这种背景可以加强组织成员和团队的理解,并帮助组织中的其他人员理解可解释的人工智能及其重要性。以下先从定义开始。
简单定义的可解释人工智能
SAS公司执行副总裁兼首席信息官Keith Collins说,“‘可解释的人工智能’术语是指人类能够通过动态生成的图表或文本描述轻松理解人工智能技术做出决策的路径。”
PubNub公司首席技术官和联合创始人Stephen Blum说,“可解释的人工智能可以等同于数学问题中的‘展示工作’。所有的人工智能决策过程和机器学习都不是在黑盒中进行的——它是一种透明的服务,具有被人类从业者解剖和理解的能力。”
Sutherland公司首席分析官Phani Nagarjuna说,“可解释的人工智能是我们可以解释人工智能的结果,同时在人工智能达到结果的路径上能够清楚地解释从输入到结果。”
SPR公司数据分析师Andrew Maturo说,“可解释的人工智能是一种机器学习或人工智能应用,伴随着易于理解的推理,它如何得出一个给定的结论。无论是通过先发制人的设计还是回顾性的分析,都在采用新技术来降低人工智能的黑盒不透明性。”
CognitiveScale公司创始人和首席技术官Matt Sanchez说,“简单来说,可解释的人工智能意味着人工智能在其操作中是透明的,这样人类就能够理解和信任决策。组织必须问这个问题——那么能解释其人工智能是如何产生这种特定的洞察力或决策的吗?”
1 2 下一页>