让人工智能坐上副驾驶:智能协作能为人类做到什么?


    当人工智能可以帮助人类承担一些工作时,我们总是把双方的职责划分的很清楚。人类工作时,很少看到人工智能的主动参与,人工智能做事时,人类更是完全不插手。
    这一点最明显的体现就在于辅助驾驶上,人类驾驶时辅助驾驶顶多会通过灯光闪烁、方向盘震动来提示人类驾驶环境的变化,而不会主动去掌握主动权,影响汽车行动的方向和速度。在辅助驾驶自动泊车时,也会让人类双手离开方向盘。
    其中的原因或许是人类的行为实在太千差万别,如果引入智能解决方案之中会加更多的计算量。想象一下,在自动泊车时人工智能认为一个车位要倒两把才能进去,人类老司机却认为倒一把就能进去,这种对问题解决方式设定的不同会让双方根本无法合作。
    可如果人类可以在各个领域人工智能亲密合作,会是怎样一种景象?
    从复制双手到复制思想:人类和人工智能的合作史
    关于人机合作这件事,我们已经历经了很多年的研究,双方合作的模式可以被分为三种类型。
    第一类合作模式是主从操纵。
    在40年代,人类为了研究不宜人体接触的放射性物质,研发出了一种主从机械手对其进行远程操控。从机械手(或机器人)负责在不适宜人类前往的地方工作,通过传感系统收集和传达信息,而人类负责控制主机械手,将动作映射到从机械手上,就形成了完美的远程操作。
    如今这种方式已经应用在很多地方,水下机器人、手术机器人等等都是这种人机合作的成果。
    可这样的操作方式有着很多不便,比如动作映射之间会有一定的误差,从机器人传感器收集来的信息也可能有一定的延迟,最后就会导致操作的低效。
    于是出现了第二种人机合作模式——协作智能。
    这种合作模式是让人和自动化的智能体一起协作,先让智能体预测人的目标,再来协助人实现这一目标。就拿简单的分拣动作来说,一张桌子上放置着不同形状的物体,人类向正方体的方向伸出手,机械手就分拣出了所有的正方体。读懂人类的目标并完成目标,这就是典型的协作智能。
    可这种模式的问题在于,人类在工作时的想法往往是多变的——那些目标流程单一,可以被套路化的工作早就被自动化了,也用不上协作智能。那些可以从多种途径实现的工作,却需要对智能体进行大量训练才能使其读懂人类每一个动作的意图,于是协作智能在应用上也迟迟没有什么进展。
    第三种合作模式则是目前热度很高的脑机接口,通过对脑电信号的读取和解码实现对器械的操控。这样的方式虽然已经和“读懂人类意图,协助实现目标”非常接近。
    但对于脑机接口我们此前也有过很多介绍,由于捕捉脑电信号十分困难,现在我们至多可以利用脑机接口完成一些非常简单的动作,距离提升生产力效率还很遥远。
    人工智能+人类,可不可能比人工智能更强?
    这样看来,第二种协作智能的模式更接近我们理想中的人机合作模式:智能体通过人类动作、操作信号等等更明确同时也更容易理解的信息判断人类目标,同时拥有一定的自主性,不至于事事都让人类亲手教学。
    最近伯克利的人工智能研究院推出了一篇论文,显示了如何利用深度强化学习来增强协作智能的效果。
    简单来说就是让智能体和阿尔法狗一样,把人类的动作当做“棋谱”大量输入给神经网络,让神经网络自行挖掘动作和实现目标之间的关系。在训练时,为神经网络加入奖惩机制,每一次当智能体帮助人类更接近一步目标时,智能体就会获得奖励,从而促使智能体越来越接近正确的合作模式。
    在研究院的实验中,相比直接告诉智能体目标,让其自己寻找解决方案,这种让智能体分辨人类目标,和人类一起寻找解决方案的方式,训练时间会大大缩短,并且帮助人类完成自己无法完成的事情。
    
    
    1  2  下一页>