事关生死:在医院ICU病房里人工智能可以做什么?
在医院的重症监控病房(简称ICU)当中,病情严重的患者需要全天连接一组设备,从而随时得到生命体征监控与维持。这些先进的医疗设备旨在帮助病人保持生存:静脉输液不断向血管内注射营养剂,机械式呼吸机将空气推入肺部,粘贴在身体上的传感器负责追踪心率、血压及其它生命体征,而床边的监测器则会波浪形线条绘制数据结果。当机器记录到超出正常参数的测量值时,则会立即发出蜂鸣与警报,从而提醒医务人员注意可能出现的潜在问题。
虽然这样的场景当中充满了高科技元素,但这些技术本身并没有得到充分的利用。每一台机器都在以彼此隔离的方式监控病患的一部分信息,且各设备之间无法协同工作——即无法捕捉或者分析丰富的数据流。ICU团队中的核心护理医生、护士、呼吸治疗师、药剂师以及其他专家们显然不可能随时对每位病患加以密切关注。
未来的ICU将更好地利用机器及其产生的连续数据流。各监控装置不再孤立运作,而是对信息加以汇总,从而向医生全面展示患者的健康状况。此外,这些信息还将流向人工智能(简称AI)系统,并由此类系统据此对设备设置进行自动调整,最终确保患者始终处于最佳健康状态。
在我们公司——位于新泽西州霍博肯的Autonomous Healthcare公司,我们正在为ICU设计并构建首批人工智能系统。这些技术方案旨在提供细致且敏锐的护理服务,如同有专家长期守在病人床边般仔细校准治疗方法。这类系统能够显著降低重症监护病房中工作人员的负担,更重要的是,该技术还有望帮助患者更快离开ICU环境,从而降低医疗保健成本。我们最初将着眼点放在美国本土的医院当中,但随着人口老龄化与慢性病患病率的增加,我们意识到此类技术在世界各地都能够发挥重大作用。
由此带来的收益很可能极为可观。在美国,ICU是医疗保健体制内最昂贵的组成部分。目前每天约有5万5千名患者在ICU接受治疗,而一般的日均费用从3千美元到1万美元不等。相关累计成本每年超过800亿美元。
随着婴儿潮一代逐步成为老人,ICU的重要意义也得到进一步凸显。当下,美国超过半数的ICU患者年龄高于65岁——预计这部分人口将由2014年的4600万增长至2030年的7400万。欧洲与亚洲呈现出的类似趋势,已经使其成为一个世界性的难题。为了满足日益增长的急性临床护理需求,ICU需要进一步提升自身功能与容量。在这方面,除了培养更多重症监护专家之外,引入自动化手段也是一种重要的实现途径。当然,人工智能系统的存在并不是为了取代人类,而是作为医疗团队的一部分,帮助医生与护士在最需要他们的时间与地点运用自己的技能。
一部分重症患者需要佩戴机械式呼吸机[1]。这些机器能够将空气推入肺部,但其节奏可能与自然呼吸模式并不同步,这将导致患者与呼吸机间“产生对抗”。智能控制系统可以利用机器学习算法实时读取气流通量[2]并识别不同类型的呼吸机异步[3]状况。在这种完全自主的系统当中,自适应控制器[4]会不断调整呼吸机的气流,使其与患者之间保持同步。作为实现全面自主运作的第一步,可以利用类似的系统作为ICU中的决策支持工具,从而为呼吸治疗师提供设备调整建议。
在目前的ICU当中,由于显示器每隔几秒就会刷新一次,因此来自床边监视器的数据往往无法得到全程关注。虽然一部分先进的ICU已经在尝试对这些测量值加以归档,但医护人员仍然很难挖掘这些数据以获得临床见解。
人类医生通常既没有时间,也没有工具以掌握这些快速积累起来的数据。然而,人工智能系统却能够做到这一点。此外,其还可以根据数据采取措施,例如调整关键ICU任务中涉及的机器。在Autonomous Healthcare公司,我们首先关注用于管理患者通气与液体的人工智能系统。当患者处于镇静状态或者患有肺衰竭(一种常见的ICU病症)时,机械呼吸机即会发挥作用。严谨的液体管理将可保证患者的循环系统始终拥有适当的血液流通量,从而使其所有组织与器官皆获得充足的氧气供应。
事实上,我们的方法来自一个看似无关的领域:航空航天领域。我们两个——Haddad与Gholami——原本都是航空航天领域的控制工程师。我们第一次见面是在乔治亚理工学院的航空航天工程学院,Haddad当时是院里的动力系统与控制学教授,Gholami则是博士研究员。2000年之后Bailey也加入了我们的团队,当时他在埃默里大学医学院担任麻醉学副教授。Haddad与Bailey最初着手研究控制方法,希望能够在手术室当中以自动化方式实现麻醉剂量供应与分娩处理。相关的临床研究测试在亚特兰大埃默里大学医院以及乔治亚州盖恩斯维尔的东北乔治亚医疗中心进行。在此之后,我们将目光投向更为复杂且广泛的ICU控制方向。2013年,Haddad与Gholami成立了Autonomous Healthcare公司,旨在将我们的人工智能系统商业化。Gholami担任公司的CEO,Haddad出任首席科学顾问,Bailey则为首席医疗官。
那么,航空航天科学与医学之间到底存在哪些共通点?具体来讲,二者都涉及大量数据,必须快速处理这些数据以便在生命面临威胁时做出决策; 此外,两者都要求同时执行多种任务并保持平稳的运作状态。更具体地讲,我们已经看到反馈控制技术在重症监控医学中的作用。这些技术利用算法与反馈通过感测、计算以及驱动等修改工程系统的行为。事实上,此类技术在飞行控制与空中交通管制等重要安全系统中可谓无处不在。
然而,飞机与医院病患之间存在着重大差异。飞机的设计与控制基于完善的力学与空气动力学理论,而人体则属于极为复杂的生物系统——事实上,时至今日我们仍然没有完全理解这些系统的运作方式与相互作用。
下面回到机械式呼吸机的管理方面。存在直接创伤、肺部感染、心力衰竭或者脓毒症等炎症综合征的ICU患者可能需要呼吸机的支持,利用其将空气压入肺部以实现被动式换气呼吸。该设备会不断运作以替代或者帮助患者完成自主呼吸。
然而,人与机器之间的互动往往非常微妙。人体拥有自己的自动呼吸控制机制,其中神经系统触发膈肌收缩并向下拉伸肺部,从而开始吸入空气。呼吸机必须具备同样的固有驱动方法,即以自然的方式同步患者的吸气与呼气过程,并尽可能与患者自主呼吸时的气流量相匹配。
为了让患者及时利用机械式呼吸机进行呼吸辅助,Autonomous Healthcare公司的Syncrom-E系统能够对气流进行分析。
遗憾的是,患者的需求与机器的输送能力之间往往存在着严重的不匹配问题——这可能导致患者与呼吸机间“产生对抗。”举例来说,患者可能天然需要更长的时间进行吸气,但呼吸机却过早地转换至呼气阶段。机械式呼吸机以及其它类型呼吸机普遍存在这种同步问题,且其直接关系到ICU内病患的驻留时长甚至是死亡风险。此外,专家们还没有彻底弄清这种异步状况会产生哪些更具体的不利影响; 但可以肯定的是,当机器将空气硬性推入肺部时,未同步的患者显然会感到不适,而肌肉性反应将会带来额外的体能消耗。在美国的ICU当中,存在严重呼吸机不同步问题的患者比例估计在12%至43%之间。
1 2 下一页>